Digression (from yesterday)

- Seasonality in average *spend*
- Most seasonality is arrivals
- But spending patterns change too
 - Different depending on what month of the year leaving (see next chart)
 - Depends on visitor type (e.g., particularly strong for education)
 - And possibly day of the week or month too
Two examples

1. Destination marketing evaluation
2. Rugby World Cup
1. Destination marketing

• Tourism New Zealand
 • Around NZ$100m per year
 • Key campaign “100% Pure”
 • Current strategy focuses on “Active Considerers”
 • Increasingly focused on-line

• The evaluation challenge
 • Well regarded outputs
 • But translation to outcomes?
 • Do they “convert” to actually come to New Zealand?
The problem:

- Growth has been steady
 - But so has Tourism New Zealand’s effort
 - Hard to construct the counter-factual
- Long delays in decision-making
- External effects obvious impacts
 - Conflict and international tensions
 - Fuel prices
 - Exchange rates
Multivariate time series model

<table>
<thead>
<tr>
<th>Response variable</th>
<th>Growth in Australian arrivals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main explanatory variable</td>
<td>Marketing budget for Australia</td>
</tr>
<tr>
<td>Control variables</td>
<td>Airfares</td>
</tr>
<tr>
<td></td>
<td>Exchange rates</td>
</tr>
<tr>
<td></td>
<td>Australian general propensity to travel</td>
</tr>
<tr>
<td></td>
<td>Australian consumption</td>
</tr>
<tr>
<td></td>
<td>(a few others …)</td>
</tr>
</tbody>
</table>
Multivariate time series model

- Didn’t answer our question
 - Not enough variation in marketing budget to explain variation in arrivals
 - Control variables changed more and were much more statistically important
 - Not enough reliable data for long time series (airfare)
- Unlikely to be much use for this
 - But will use the technique for other purposes eg relationship of airfares and oil prices to arrivals or expenditure

Case study – America’s Next Top Model

- Website and bookings
 - Spikes website hits for newzealand.com and for Air New Zealand
 - Bookings on Air New Zealand from 20 April-28 May rose by 17 percent compared to the same period in 2009,
 - Especially positive as had been trending down
- Awareness
 - 26% aware of link
 - Of those aware, 56% more likely to consider a holiday
Case study – China
‘Experience New Zealand’

• Campaign won prestigious award
• Six-fold increase in web hits
 • 23,000 traceable referrals to commercial partners
 • But can’t track how many led to purchases
• China has had massive growth
 • But cannot attribute to campaign
 • General Chinese outbound increase the main cause
Questions to visitors

- Simply asking
 - “Were you influenced by….”
 - Probably an underestimate
 - Subjects don’t realise the full range of marketing activity that may influence them

Questions to visitors

- Experimental analysis results
 - Could estimate extra expenditure per year due to advertising
 - A large fraction of expenditure by those reporting advertising "main influence"
 - A small fraction of those reporting "an influence"
- Estimate return on marketing investment
 - Massive uncertainty…
 - Not enough sample size to say how these visitors different to others
More econometric modelling

- Funded as blue skies research
- Cross-country, time series
- Multi-year project
- Might avoid some problems:
 - May be able to use variation in marketing activities \textit{between} market countries
 - This variation is more than the variation in one market country, over time

On-line analytics

- A range of improved tools for tracking behaviour
Our next steps

- A new longitudinal study
- Australia and possibly Singapore
- Based on “active considerers”
 - Will follow up at six monthly intervals
 - Observe behaviour
 - If they don’t go to NZ, where do they go?
 - Tease out awareness of range of marketing activity, not just commercials

Summary – destination marketing evaluation

- Time series modelling
- Case studies x 4
- Questions in IVS and VEM
- Cross-country modelling
- Longitudinal study
- Increased on-line analytics
2. – The Rugby World Cup

- A “mega event”
- Benefits and costs well beyond tourism
- Our question:
 - “what was the change in arrivals and expenditure that can be attributed to the Rugby World Cup?”
 - Needs to be robust in the face of criticism of uncertainty, displacement, attribution issues, etc

Arrivals…

- 133,000 marked their arrival cards
 - We think the first time all arrivals for a mega-event recorded
- Main problems are
 - “how big is the increase in historical terms?”
 - “how many would have come anyway?”
How big was the increase compared to previous years?
For some market countries, the increase was unprecedented.

How many *extra*?

- Two methods for the “no Cup” counterfactual:
 1. Naïve comparison to same months previous year
 2. Expected arrivals in Sept-Oct, given arrivals in May

- Weaknesses of each
 1. Doesn’t take into account Christchurch earthquake
 2. Vulnerable to just “May”

- Result is a range of estimates
 - $89,000 \pm 10,000$ net increase
Expenditure…

• More straightforward
• Rugby arrivals were also tagged in the IVS
 • But resulting sub-sample very small
 • $3,400 \pm $630 average spend
• Total expenditure result of two sources of randomness
 • Multiply the arrivals (over 15) and average spend
 • Used simulations to derive an overall confidence interval
$280 million ± $60 million

Further information

- Surveyed 12,000 international ticket-buyers
- Weaknesses:
 - Expenditure information not comparable
- Good for:
 - Overall satisfaction
 - Comparing satisfaction with different aspects (results were similar to normal tourist profile)
 - Assessing issues of particular interest such as engagement with cultural activities, Maori, etc
Summary – Rugby World Cup

- Drew on:
 - Immigration data
 - International Visitors Survey
 - Ad hoc survey of ticket holders

- Further analysis was required:
 - How much net increase in arrivals?
 - Combining uncertainty from multiple sources

- Final results very robust

Bonus slides (not for showing)